Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.642
Filtrar
1.
Am Fam Physician ; 109(3): 226-232, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38574212

RESUMO

Diabetic peripheral neuropathy occurs in up to 50% of patients with diabetes mellitus and increases the risk of diabetic foot ulcers and infections. Consistent screening and clear communication are essential to decrease disparities in assessment of neuropathic symptoms and diagnosis. Physicians should address underlying risk factors such as poor glycemic control, vitamin B12 deficiency, elevated blood pressure, and obesity to reduce the likelihood of developing neuropathy. First-line drug therapy for painful diabetic peripheral neuropathy includes duloxetine, gabapentin, amitriptyline, and pregabalin; however, these medications do not restore sensation to affected extremities. Evidence for long-term benefit and safety of first-line treatment options is lacking. Second-line drug therapy includes nortriptyline, imipramine, venlafaxine, carbamazepine, oxcarbazepine, topical lidocaine, and topical capsaicin. Periodic, objective monitoring of medication response is critical because patients may not obtain desired pain reduction, adverse effects are common, and serious adverse effects can occur. Opioids should generally be avoided. Nondrug therapies with low- to moderate-quality evidence include exercise and neuromodulation with spinal cord stimulation or transcutaneous electrical nerve stimulation. Peripheral transcutaneous electrical nerve stimulation is well tolerated and inexpensive, but benefits are modest. Other treatments, such as acupuncture, alpha-lipoic acid, acetyl-L-carnitine, cannabidiol, and onabotulinumtoxinA need further study in patients with diabetic peripheral neuropathy.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Humanos , Neuropatias Diabéticas/diagnóstico , Neuropatias Diabéticas/prevenção & controle , Cloridrato de Duloxetina/uso terapêutico , Capsaicina/uso terapêutico , Gabapentina/uso terapêutico , Pregabalina/uso terapêutico , Dor/tratamento farmacológico , Diabetes Mellitus/tratamento farmacológico
2.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612571

RESUMO

Osteosarcoma is a highly malignant, painful cancer with poor treatment opportunities and a bad prognosis. Transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) receptors are non-selective cation channels that have been of great interest in cancer, as their expression is increased in some malignancies. In our study we aim to characterize the expression and functionality of the TRPA1 and TRPV1 channels in human and mouse osteosarcoma tissues and in a mouse cell line. TRPA1/Trpa1 and TRPV1/Trpv1 mRNA expressions were demonstrated by PCR gel electrophoresis and RNAscope in situ hybridization. The function of these channels was confirmed by their radioactive 45Ca2+ uptake in response to the TRPA1 agonist, Allyl-isothiocyanate (AITC), and TRPV1 agonist, capsaicin, in K7M2 cells. An ATP-based K2M7 cell viability luminescence assay was used to determine cell viability after AITC or capsaicin treatments. Both TRPA1/Trpa1 and TRPV1/Trpv1 were expressed similarly in human and mouse osteosarcoma tissues, while Trpa1 transcripts were more abundantly present in K7M2 cells. TRPA1 activation with 200 µM AITC induced a significant 45Ca2+ influx into K7M2 cells, and the antagonist attenuated this effect. In accordance with the lower Trpv1 expression, capsaicin induced a moderate 45Ca2+ uptake, which did not reach the level of statistical significance. Both AITC and capsaicin significantly reduced K7M2 cell viability, demonstrating EC50 values of 22 µM and 74 µM. The viability-decreasing effect of AITC was significantly but only partially antagonized by HC-030031, but the action of capsaicin was not affected by the TRPV1 antagonist capsazepine. We provide here the first data on the functional expression of the TRPA1 and TRPV1 ion channels in osteosarcoma, suggesting novel diagnostic and/or therapeutic perspectives.


Assuntos
Neoplasias Ósseas , Radioisótopos de Cálcio , Isotiocianatos , Osteossarcoma , Canais de Potencial de Receptor Transitório , Humanos , Animais , Camundongos , Canais de Potencial de Receptor Transitório/genética , Anquirinas , Capsaicina/farmacologia , Osteossarcoma/genética , Neoplasias Ósseas/genética
3.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612853

RESUMO

While the involvement of thermosensitive transient receptor potential channels (TRPs) in dry eye disease (DED) has been known for years, their expression in the meibomian gland (MG) has never been investigated. This study aims to show their expression and involvement in the lipogenesis of the MG, providing a possible new drug target in the treatment of DED. Our RT-PCR, Western blot and immunofluorescence analysis showed the expression of TRPV1, TRPV3, TRPV4 and TRPM8 in the MG at the gene and the protein level. RT-PCR also showed gene expression of TRPV2 but not TRPA1. Calcium imaging and planar patch-clamping performed on an immortalized human meibomian gland epithelial cell line (hMGECs) demonstrated increasing whole-cell currents after the application of capsaicin (TRPV1) or icilin (TRPM8). Decreasing whole-cell currents could be registered after the application of AMG9810 (TRPV1) or AMTB (TRPM8). Oil red O staining on hMGECs showed an increase in lipid expression after TRPV1 activation and a decrease after TRPM8 activation. We conclude that thermo-TRPs are expressed at the gene and the protein level in MGs. Moreover, TRPV1 and TRPM8's functional expression and their contribution to their lipid expression could be demonstrated. Therefore, TRPs are potential drug targets and their clinical relevance in the therapy of meibomian gland dysfunction requires further investigation.


Assuntos
Disfunção da Glândula Tarsal , Glândulas Tarsais , Humanos , Lipogênese/genética , Western Blotting , Capsaicina/farmacologia
4.
J Cell Mol Med ; 28(8): e18202, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38591872

RESUMO

Secondary hyperparathyroidism has a significant impact on the overall well-being of the body. Capsiates, known for their antioxidant and metabolic properties, have emerged as a promising alternative treatment for secondary hyperparathyroidism. This study aims to evaluate the effects and mechanisms of capsiates in the treatment of secondary hyperparathyroidism. To achieve our research objectives, we conducted a study on patients' serum and examined changes in metabolic markers using serum metabolomics. We induced secondary hyperparathyroidism in rat through dietary intervention and divided them into four groups. The first group, referred to as the Parathyroid Hormone (PTH) group, received a low-calcium and high-phosphate diet (0.2% calcium, 1.2% phosphorus). The second group served as the control group, receiving a standard phosphate and calcium diet (0.6% calcium, 0.6% phosphorus). The third group, called the capsiates group, consisted of rat from the control group treated with capsiates (intraperitoneal injection of 2 mg/kg capsiates for 2 weeks after 2 weeks of dietary intervention). The fourth group was the capsiates-treated PTH group. Subsequently, we conducted ribose nucleic acid (RNA) sequencing on parathyroid gland cells and evaluated serum thyroxine levels, oxidative stress, expression of proteins associated with vascular neogenesis, measurement of SOD, GSH and 3-nitrotyrosine, micro-CT and histological staining. The serum metabolomic data revealed a significant decrease in capsiate levels in the secondary hyperparathyroidism group. Administration of capsiates to PTH rat resulted in increased calcium levels compared to the PTH group. Additionally, the PTH + Capsiates group showed significantly lower levels of PTH and phosphate compared to the PTH group. The PTH group exhibited a notable increase in the quantity and size of mitochondria compared to the control group. Following capsiates administration to the PTH group, there was a significant reduction in the number of mitochondria and length of microvilli, but an increase in the size of mitochondria compared to the PTH group. Sequencing analysis revealed that vascular endothelial growth factor (VEGF) and Vascular Endothelial Growth Factor Receptor 1 (VEGFR1) play crucial roles in this process. Vascular-related variables and downstream signalling were significantly elevated in hyperthyroidism and were alleviated with capsaicin treatment. Finally, combining capsiates with the PTH group improved bone mineral density, Tb.N, BV.TV, Cs.Th, Tt.Ar, OPG, Ob.TV and Oc.TV, as well as the mineral apposition rate, but significantly decreased Tb.Sp and Receptor Activator for Nuclear Factor-κ B Ligand (RANKL) compared to the PTH group. The findings suggest that capsiates can improve secondary hyperparathyroidism and ameliorated osteoporosis outcomes by inhibiting angiogenesis and reducing oxidative stress.


Assuntos
Capsaicina/análogos & derivados , Hiperparatireoidismo Secundário , Resistência à Insulina , Humanos , Ratos , Animais , Cálcio , 60489 , Fator A de Crescimento do Endotélio Vascular , Hiperparatireoidismo Secundário/tratamento farmacológico , Hiperparatireoidismo Secundário/etiologia , Hormônio Paratireóideo , Fósforo , Fosfatos
5.
Invest Ophthalmol Vis Sci ; 65(4): 30, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38635244

RESUMO

Purpose: This study aims to elucidate the calcitonin gene-related peptide (CGRP) mediation and primary mechanism of corneal sensory nerves on tear production of the lacrimal gland. Methods: Mouse corneal denervation models were constructed through surgical axotomy, pharmacologic treatment with capsaicin or resiniferatoxin, and Trpv1-Cre/DTR mice with diphtheria toxin injection. The capsaicin-treated mice received subconjunctival injection of CGRP or substance P, while the normal C57BL/6J mice were administered with CGRP receptor antagonist BIBN-4096. Furthermore, double immunostaining of c-FOS+ and choline acetyltransferase was used to evaluate the activation of the superior salivatory nucleus (SSN). Mouse lacrimal glands were collected for transcriptomic sequencing and subsequent RNA and protein expression analysis. Results: The corneal denervated mice exhibited a significant reduction in corneal sensitivity and tear secretion. In capsaicin-treated mice, tear secretion decreased to 2.5 ± 0.5 mm compared to 6.3 ± 0.9 mm in control mice (P < 0.0001). However, exogenous administration of CGRP in capsaicin-treated mice increased tear secretion from 2.6 ± 0.5 mm to 4.5 ± 0.5 mm (P = 0.0009), while BIBN-4096 treatment reduced tear secretion to 3.4 ± 0.5 mm when compared to 7.3 ± 0.7 mm in control mice (P = 0.0022). Furthermore, c-FOS+ cell number in the SSN increased by twofold (P = 0.0168) after CGRP administration compared with capsaicin-treated mice. In addition, the expressions of CCNA2, Ki67, PCNA, and CDK1 in acinar cells of the lacrimal gland were impaired by corneal denervation and alleviated by CGRP administration. Conclusions: CGRP released by corneal sensory nerves mediates tear secretion of the lacrimal gland, providing a new strategy for improving tear secretion in patients with neurotrophic keratitis.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Aparelho Lacrimal , Animais , Camundongos , Capsaicina , Genes fos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-fos
6.
Sci Rep ; 14(1): 9051, 2024 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643253

RESUMO

Neurons have the unique capacity to adapt output in response to changes in their environment. Within seconds, sensory nerve endings can become hypersensitive to stimuli in response to potentially damaging events. The underlying behavioral response is well studied, but several of the key signaling molecules that mediate sensory hypersensitivity remain unknown. We previously discovered that peripheral voltage-gated CaV2.2 channels in nerve endings in skin are essential for the rapid, transient increase in sensitivity to heat, but not to mechanical stimuli, that accompanies intradermal capsaicin. Here we report that the cytokine interleukin-1α (IL-1α), an alarmin, is necessary and sufficient to trigger rapid heat and mechanical hypersensitivity in skin. Of 20 cytokines screened, only IL-1α was consistently detected in hind paw interstitial fluid in response to intradermal capsaicin and, similar to behavioral sensitivity to heat, IL-1α levels were also dependent on peripheral CaV2.2 channel activity. Neutralizing IL-1α in skin significantly reduced capsaicin-induced changes in hind paw sensitivity to radiant heat and mechanical stimulation. Intradermal IL-1α enhances behavioral responses to stimuli and, in culture, IL-1α enhances the responsiveness of Trpv1-expressing sensory neurons. Together, our data suggest that IL-1α is the key cytokine that underlies rapid and reversible neuroinflammatory responses in skin.


Assuntos
Capsaicina , Interleucina-1alfa , Capsaicina/farmacologia , Temperatura Alta , Pele , Células Receptoras Sensoriais , Canais de Cátion TRPV
7.
Clin Oral Investig ; 28(5): 246, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38589630

RESUMO

OBJECTIVES: Opiorphin is an analgesic peptide released by salivary glands and capsaicin an agonist of TRPV1 receptors eliciting burning sensations. The primary objective of this study was to assess opiorphin release after stimulation of the tongue by capsaicin (STC). The secondary objectives were to compare opiorphin release after STC in 3 groups of subjects [healthy (CTRL), Burning Mouth Syndrome (BMS), painful Temporomandibular disorders (TMDp)] and pain evoked by STC in these 3 groups. MATERIALS AND METHODS: Salivary opiorphin was assessed with high-performance liquid chromatography at 3 different time points (baseline, after 5 min and 20 min of STC). Pain was self-reported on a (0-10) numeric rating scale. RESULTS: Three groups (N = 16) of adults were recruited at the Clinical Hospital Centre and School of Dental Medicine in Zagreb. Opiorphin levels were higher (1) in TMDp compared to CTRL in 1st (2.23 ± 1.72 pg/ul vs. 0.67 ± 0.44 pg/ul, p = 0.002) and 3rd sampling (2.44 ± 2.01 pg/ul vs. 0.74 ± 0.52 pg/ul, p = 0.020) and (2) within BMS group at 3rd sampling vs. baseline (p < 0.025). Pain scores were higher in BMS compared to TMDp (p < 0.025) and CTRL (p < 0.025). CONCLUSION: This study evidenced (1) a differential basal amount of opiorphin in two pain conditions and control subjects (2) a differential kinetic of release of opiorphin after STC in CTRL, BMS and TMDp (3) a differential pain perception after STC in BMS and TMDp vs. CTRL, which can provide a readout for animal models. CLINICAL RELEVANCE: The specific regulation of opiorphin release in patients with orofacial painful conditions provides valuable insights for clinicians and researchers in physiology and pathology and encourages further research in this area. TRIAL REGISTRATION: ClinicalTrials.gov NCT04694274. Registered on 01/05/2021.


Assuntos
Síndrome da Ardência Bucal , Capsaicina , Proteínas e Peptídeos Salivares , Adulto , Humanos , Oligopeptídeos/farmacologia , Dor Facial
8.
Math Biosci Eng ; 21(3): 4104-4116, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38549320

RESUMO

In this paper, Gompertz type models are proposed to understand the temporal tumor volume behavior of prostate cancer when a periodical treatment is provided. Existence, uniqueness, and stability of periodic solutions are established. The models are used to fit the data and to forecast the tumor growth behavior based on prostate cancer treatments using capsaicin and docetaxel anticancer drugs. Numerical simulations show that the combination of capsaicin and docetaxel is the most efficient treatment of prostate cancer.


Assuntos
Antineoplásicos , Neoplasias da Próstata , Masculino , Humanos , Docetaxel/uso terapêutico , Capsaicina/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral
9.
Cell Calcium ; 119: 102870, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38531262

RESUMO

In the 1990s, the identification of a non-selective ion channel, especially responsive to capsaicin, revolutionized the studies of somatosensation and pain that were to follow. The TRPV1 channel is expressed mainly in neuronal cells, more specifically, in sensory neurons responsible for the perception of noxious stimuli. However, its presence has also been detected in other non-neuronal cells, such as immune cells, ß- pancreatic cells, muscle cells and adipocytes. Activation of the channel occurs in response to a wide range of stimuli, such as noxious heat, low pH, gasses, toxins, endocannabinoids, lipid-derived endovanilloid, and chemical agents, such as capsaicin and resiniferatoxin. This activation results in an influx of cations through the channel pore, especially calcium. Intracellular calcium triggers different responses in sensory neurons. Dephosphorylation of the TRPV1 channel leads to its desensitization, which disrupts its function, while its phosphorylation increases the channel's sensitization and contributes to the channel's rehabilitation after desensitization. Kinases, phosphoinositides, and calmodulin are the main signaling pathways responsible for the channel's regulation. Thus, in this review we provide an overview of TRPV1 discovery, its tissue expression as well as on the mechanisms by which TRPV1 activation (directly or indirectly) induces pain in different disease models.


Assuntos
Neuroimunomodulação , Dor , Canais de Cátion TRPV , Humanos , Cálcio/metabolismo , Capsaicina/farmacologia , Dor/metabolismo , Canais de Cátion TRPV/metabolismo , Animais
10.
Chem Biodivers ; 21(4): e202400187, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38429232

RESUMO

Psidium brownianum Mart is reported in the literature by antinociceptive and antioxidant activities, indicating that this species' secondary metabolites might be used to control inflammatory processes. The present study aimed to characterize the topical antiedematogenic activity of the essential oil of Psidium brownianum Mart. (OEPB) in ear edema models by different inflammatory agents. Female Swiss mice (25-35 g) and Wistar albino rats (200-300 g) were used throughout tests (n=6/group) on acute or chronic edema models induced by single and multiple topical applications. The OEPB is administered topically pure or at a concentration of 100 or 200 mg/mL. The antiedematogenic mechanism of OEPB was analyzed by administering capsaicin, arachidonic acid, histamine, and phenol at the best effective dose (200 mg/mL). The results showed a significant reduction of edema-induced single (28.87 %) and multiple (50.13 %) applications of croton oil compared to the negative control group. Regarding potential mechanisms of action, OEPB (200 mg/mL) inhibited the development of edema triggered by capsaicin (29.95 %), arachidonic acid (22.66 %), phenol (23.35 %), and histamine (75.46 %), suggesting an interference with the histaminergic pathway. These results indicate that OEPB presents a topical antiedematogenic effect in acute and chronic murine models, possibly interfering with inflammatory pathways triggered by mediators such as histamine.


Assuntos
Óleos Voláteis , Psidium , Camundongos , Feminino , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Capsaicina , Histamina/efeitos adversos , Ácido Araquidônico/efeitos adversos , Edema/induzido quimicamente , Edema/tratamento farmacológico , Extratos Vegetais/farmacologia
11.
Am J Physiol Regul Integr Comp Physiol ; 326(5): R370-R382, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38436058

RESUMO

Obesity is often accompanied by increased adipose tissue inflammation, a process that is partially driven by adipose tissue-resident macrophages. In this study, we explored the potential for plant-derived dietary compounds to exert anti-inflammatory effects in macrophages that alleviate obesity-associated adipocyte dysfunction. Capsaicin (CAP), schisandrin A (SA), enterodiol (END), and enterolactone (ENL) treatment polarized J774 macrophages to an "M2" or anti-inflammatory phenotype and inhibited responses to stimulation with lipopolysaccharide (LPS). Furthermore, these compounds blocked inflammasome activation when administered just before ATP-induced NLRP3 activation, as evidenced by the abrogation of IL-1ß release in mouse macrophages and human peripheral blood monocytes. The addition of CAP, SA, or ENL during the differentiation of bone marrow-derived macrophages was also sufficient to inhibit LPS-induced IL-6 and TNFα production. Finally, CAP, END, and ENL treatment during differentiation of 3T3-L1 adipocytes induced an adiponectin-high phenotype accompanied by increases in thermogenic gene expression, and conditioned media from these adipocytes inhibited LPS-induced production of IL-1ß, IL-6, and TNFα from J774 macrophages. These polarizing effects were partially mediated by the elevated adiponectin and decreased syndecan-4 in the adipocyte-conditioned media. These results implicate the contribution of plant-derived dietary components to the modulation of macrophages and adipocytes in obesity.NEW & NOTEWORTHY The utility of food-based products to prevent or alleviate chronic conditions such as obesity and its associated comorbidities is an attractive approach. Capsaicin, schisandrin A, enterodiol, and enterolactone, phytochemicals present in traditional medicinal food, decreased proinflammatory cytokine production from macrophages that, in turn, reduced obesity-associated adipocyte dysfunction. These results implicate the contribution of plant-derived dietary components to the modulation of macrophages and adipocytes in obesity.


Assuntos
4-Butirolactona/análogos & derivados , Capsaicina , Ciclo-Octanos , Lignanas , Compostos Policíclicos , Fator de Necrose Tumoral alfa , Animais , Camundongos , Humanos , Capsaicina/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Adiponectina , Lipopolissacarídeos/toxicidade , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Obesidade/complicações , Obesidade/metabolismo , Inflamação/metabolismo , Anti-Inflamatórios , Macrófagos/metabolismo
12.
Neuropharmacology ; 251: 109926, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554815

RESUMO

We tested the efficacy of 4'-fluorocannabidiol (4'-F-CBD), a semisynthetic cannabidiol derivative, and HU-910, a cannabinoid receptor 2 (CB2) agonist in resolving l-DOPA-induced dyskinesia (LID). Specifically, we were interested in studying whether these compounds could restrain striatal inflammatory responses and rescue glutamatergic disturbances characteristic of the dyskinetic state. C57BL/6 mice were rendered hemiparkinsonian by unilateral striatal lesioning with 6-OHDA. Abnormal involuntary movements were then induced by repeated i.p. injections of l-DOPA + benserazide. After LID was installed, the effects of a 3-day treatment with 4'-F-CBD or HU-910 in combination or not with the TRPV1 antagonist capsazepine (CPZ) or CB2 agonists HU-308 and JWH015 were assessed. Immunostaining was conducted to investigate the impacts of 4'-F-CBD and HU-910 (with CPZ) on inflammation and glutamatergic synapses. Our results showed that the combination of 4'-F-CBD + CPZ, but not when administered alone, decreased LID. Neither HU-910 alone nor HU-910+CPZ were effective. The CB2 agonists HU-308 and JWH015 were also ineffective in decreasing LID. Both combination treatments efficiently reduced microglial and astrocyte activation in the dorsal striatum of dyskinetic mice. However, only 4'-F-CBD + CPZ normalized the density of glutamate vesicular transporter-1 (vGluT1) puncta colocalized with the postsynaptic density marker PSD95. These findings suggest that 4'-F-CBD + CPZ normalizes dysregulated cortico-striatal glutamatergic inputs, which could be involved in their anti-dyskinetic effects. Although it is not possible to rule out the involvement of anti-inflammatory mechanisms, the decrease in striatal neuroinflammation markers by 4'-F-CBD and HU-910 without an associated reduction in LID indicates that they are insufficient per se to prevent LID manifestations.


Assuntos
Compostos Bicíclicos com Pontes , Canabidiol/análogos & derivados , Canabinoides , Capsaicina/análogos & derivados , Discinesia Induzida por Medicamentos , Levodopa , Ratos , Camundongos , Animais , Levodopa/uso terapêutico , Antiparkinsonianos/farmacologia , Ratos Sprague-Dawley , Discinesia Induzida por Medicamentos/tratamento farmacológico , Camundongos Endogâmicos C57BL , Corpo Estriado , Oxidopamina/farmacologia , Anti-Inflamatórios/farmacologia , Modelos Animais de Doenças
13.
Physiol Rep ; 12(6): e15988, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38537943

RESUMO

The downward slope during the near-infrared spectroscopy (NIRS)-vascular occlusion test (NIRS-VOT) is purported as a simplified estimate of metabolism. Whether or not the NIRS-VOT exhibits sex- or limb-specificity or may be acutely altered remains to be elucidated. Thus, we investigated if there is limb- or sex specificity in tissue desaturation rates (DeO2) during a NIRS-VOT, and if acute dietary capsaicin may alter this estimate of muscle metabolism. Young healthy men (n = 25, 21 ± 4 years) and women (n = 20, 20 ± 1 years) ingested either placebo or capsaicin, in a counterbalanced, single-blind, crossover design after which a simplified NIRS-VOT was conducted to determine the DeO2 (%/s), as an estimate of oxidative muscle metabolism, in both the forearm (flexors) and thigh (vastus lateralis). There was a significant limb effect with the quadriceps having a greater DeO2 than the forearm (-2.31 ± 1.34 vs. -1.78 ± 1.22%/s, p = 0.007, ηp 2 = 0.19). There was a significant effect of sex on DeO2 (p = 0.005, ηp 2 = 0.203) with men exhibiting a lesser DeO2 than women (-1.73 ± 1.03 vs. -2.36 ± 1.32%/s, respectively). This manifested in significant interactions of limb*capsaicin (p = 0.001, ηp 2 = 0.26) as well as limb*capsaicin*sex on DeO2 (p = 0.013, ηp 2 = 0.16) being observed. Capsaicin does not clearly alter O2-dependent muscle metabolism, but there was apparent limb and sex specificity, interacting with capsaicin in this NIRS-derived assessment.


Assuntos
Capsaicina , Doenças Vasculares , Feminino , Humanos , Masculino , Capsaicina/farmacologia , Músculo Esquelético/metabolismo , Consumo de Oxigênio/fisiologia , Método Simples-Cego , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Doenças Vasculares/metabolismo
14.
Biochem Biophys Res Commun ; 708: 149817, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38537528

RESUMO

Epidermal keratinocytes, forming the outermost layer of the human body, serve as a crucial barrier against diverse external stressors such as ultraviolet radiation. Proper keratinocyte differentiation and effective responses to external stimuli are pivotal for maintaining barrier integrity. Heat is one such stimulus that triggers the synthesis of heat shock proteins (HSPs) when cells are exposed to temperatures above 42 °C. Additionally, activation of the transient receptor potential cation channel subfamily V member 1 (TRPV1) occurs at 42 °C. Here, we explore the interplay between TRPV1 signaling and HSP induction in human keratinocytes. Both heat and capsaicin, a TRPV1 agonist, induce expression of HSP27, HSP70, and HSP90 in keratinocytes. Interestingly, pharmacological inhibition of TRPV1 attenuates heat-induced HSP27 expression, but not that of HSP70 or HSP90. Furthermore, both heat and capsaicin stimulation result in distinct phosphorylation patterns of heat shock factor 1 (HSF1), with phosphorylation at serine 326 being a common feature. Notably, genetic manipulation to mimic dephosphorylation of HSF1 at serine 326 reduces HSP27 levels. Additionally, ΔNp63, a key regulator of epidermal differentiation, negatively modulates HSP27 expression independently of HSF1 phosphorylation status. While heat stimulation has no effect on ΔNp63 expression, capsaicin reduces its levels. The precise role of TRPV1 signaling in keratinocytes warrants further investigation for a comprehensive understanding of its impact on barrier function.


Assuntos
Capsaicina , Proteínas de Choque Térmico HSP27 , Humanos , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico HSP27/metabolismo , Capsaicina/farmacologia , Fosforilação , Serina/metabolismo , Raios Ultravioleta , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Queratinócitos/metabolismo , Resposta ao Choque Térmico , Fatores de Transcrição de Choque Térmico/metabolismo
16.
Cardiovasc Toxicol ; 24(4): 396-407, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38451349

RESUMO

Intravenous injection of capsaicin produces vagal-mediated protective cardio-pulmonary (CP) reflexes manifesting as tachypnea, bradycardia, and triphasic blood pressure (BP) response in anesthetized rats. Particulate matter from diesel engine exhaust has been reported to attenuate these reflexes. However, the effects of gaseous constituents of diesel exhaust are not known. Therefore, the present study was designed to investigate the effects of gaseous pollutants in diesel exhaust, on capsaicin-induced CP reflexes in rat model. Adult male rats were randomly assigned to three groups: Non-exposed (NE) group, filtered diesel exhaust-exposed (FDE) group and N-acetyl cysteine (NAC)-treated FDE group. FDE group of rats (n = 6) were exposed to filtered diesel exhaust for 5 h a day for 5 days (D1-D5), and were taken for dissection on day 6 (D6), while NE group of rats (n = 6) remained unexposed. On D6, rats were anesthetized, following which jugular vein was cannulated for injection of chemicals, and femoral artery was cannulated to record the BP. Lead II electrocardiogram and respiratory movements were also recorded. Results show that intravenous injection of capsaicin (0.1 ml; 10 µg/kg) produced immediate tachypneic, hyperventilatory, hypotensive, and bradycardiac responses in both NE and FDE groups of rats. However, these capsaicin-induced CP responses were significantly attenuated in FDE group as compared to the NE group of rats. Further, FDE-induced attenuation of capsaicin-evoked CP responses were diminished in the N-acetyl cysteine-treated FDE rats. These findings demonstrate that oxidant stress mechanisms could possibly be involved in inhibition of CP reflexes by gaseous pollutants in diesel engine exhaust.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Ratos , Masculino , Animais , Ratos Wistar , Emissões de Veículos/toxicidade , Capsaicina/farmacologia , Gases , Cisteína , Poluentes Atmosféricos/toxicidade , Reflexo
17.
Curr Opin Pharmacol ; 75: 102447, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38471384

RESUMO

Several decades of research support the involvement of transient receptor potential (TRP) channels in nociception. Despite the disappointments of early TRPV1 antagonist programs, the TRP family remains a promising therapeutic target in pain disorders. High-dose capsaicin patches are already in clinical use to relieve neuropathic pain. At present, localized injections of the side-directed TRPV1 agonist capsaicin and resiniferatoxin are undergoing clinical trials in patients with osteoarthritis and bone cancer pain. TRPA1, TRPM3, and TRPC5 channels are also of significant interest. This review discusses the role of TRP channels in human pain conditions.


Assuntos
Dor Musculoesquelética , Neuralgia , Canais de Potencial de Receptor Transitório , Humanos , Capsaicina , Neuralgia/tratamento farmacológico , Canais de Cátion TRPV , Canal de Cátion TRPA1
18.
J Integr Neurosci ; 23(3): 64, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38538230

RESUMO

BACKGROUND: Pannexin1 (Panx1) is a membrane channel expressed in different cells of the nervous system and is involved in several pathological conditions, including pain and inflammation. At the central nervous system, the role of Panx1 is already well-established. However, in the periphery, there is a lack of information regarding the participation of Panx1 in neuronal sensitization. The dorsal root ganglion (DRG) is a critical structure for pain processing and modulation. For this reason, understanding the molecular mechanism in the DRG associated with neuronal hypersensitivity has become highly relevant to discovering new possibilities for pain treatment. Here, we aimed to investigate the role of Panx1 in acute nociception and peripheral inflammatory and neuropathic pain by using two different approaches. METHODS: Rats were treated with a selective Panx1 blocker peptide (10Panx) into L5-DRG, followed by ipsilateral intraplantar injection of carrageenan, formalin, or capsaicin. DRG neuronal cells were pre-treated with 10Panx and stimulated by capsaicin to evaluate calcium influx. Panx1 knockout mice (Panx1-KO) received carrageenan or capsaicin into the paw and paclitaxel intraperitoneally. The von Frey test was performed to measure the mechanical threshold of rats' and mice's paws before and after each treatment. RESULTS: Pharmacological blockade of Panx1 in the DRG of rats resulted in a dose-dependent decrease of mechanical allodynia triggered by carrageenan, and nociception decreased in the second phase of formalin. Nociceptive behavior response induced by capsaicin was significantly lower in rats treated with Panx1 blockade into DRG. Neuronal cells with Panx1 blockage showed lower intracellular calcium response than untreated cells after capsaicin administration. Accordingly, Panx1-KO mice showed a robust reduction in mechanical allodynia after carrageenan and a lower nociceptive response to capsaicin. A single dose of paclitaxel promoted acute mechanical pain in wildtype (WT) but not in Panx1-KO mice. Four doses of chemotherapy promoted chronic mechanical allodynia in both genotypes, although Panx1-KO mice had significant ablation in the first eight days. CONCLUSION: Our findings suggest that Panx1 is critical for developing peripheral inflammatory pain and acute nociception involving transient receptor potential vanilloid subtype 1 (TRPV1) but is not essential for neuropathic pain chronicity.


Assuntos
Hiperalgesia , Neuralgia , Ratos , Camundongos , Animais , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Hiperalgesia/patologia , Capsaicina/farmacologia , Capsaicina/uso terapêutico , Paclitaxel/efeitos adversos , Carragenina/efeitos adversos , Cálcio , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Formaldeído/efeitos adversos , Gânglios Espinais , Proteínas do Tecido Nervoso , Conexinas/genética , Conexinas/uso terapêutico
19.
Int J Biol Macromol ; 265(Pt 2): 130904, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38553392

RESUMO

This study aims to enhance the functionality of conventional protein-based nanocellulose composite films (PNCF) to meet the high demand for natural antimicrobial packaging films. Capsicum leaf protein (CLP) and cellulose nanocrystals (CNCs) extracted from capsicum leaves were used as raw materials. Capsaicin, an essential antibacterial active ingredient in the capsicum plant, was used as an additive. The influence of different capsaicin loads on PNCF physicochemical and material properties was investigated under alkaline conditions. The results show that all film-forming liquids (FFLs) are non-Newtonian fluids with shear thinning behavior. When the capsaicin loading exceeds 20 %, the surface microstructure of PNCF changes from dense lamellar to rod-like. Capsaicin did not alter the PNCF crystal structure, thermal stability or chemical bonding. Capsaicin can be loaded onto the PNCF surface by intermolecular hydrogen bonding reactions with CLP and CNC, preserving capsaicin's biological activity. With increasing capsaicin loads from 0 % to 50 %, the mechanical and hydrophobic properties of PNCF decreased, whereas the diameter of the inhibition zone increased. All PNCFs have UV-blocking properties with potential applications in developing biodegradable food packaging materials. The results of this study provide a theoretical basis for the high-value utilization of capsicum cultivation waste and the preparation of novel PNCF.


Assuntos
Capsicum , Nanopartículas , Capsicum/química , Capsaicina/farmacologia , Resistência à Tração , Celulose/química , Nanopartículas/química , Cânfora , Mentol , Verduras , Folhas de Planta/metabolismo
20.
Am J Physiol Regul Integr Comp Physiol ; 326(5): R427-R437, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38497128

RESUMO

Methylglyoxal (MG), a reactive metabolic byproduct of glycolysis, is a causative of painful diabetic neuropathy. Patients with diabetes are associated with more frequent severe asthma exacerbation. Stimulation of capsaicin-sensitive lung vagal (CSLV) afferents may contribute to the pathogenesis of hyperreactive airway diseases such as asthma. However, the possibility of the stimulatory effect of MG on CSLV afferents and the underlying mechanisms remain unknown. Our results showed that intravenous injection of MG (25 mg/kg, MG25) in anesthetized, spontaneously breathing rats elicited pulmonary chemoreflexes characterized by apnea, bradycardia, and hypotension. The MG-induced apneic response was reproducible and dose dependent. MG25 no longer evoked these reflex responses after perineural capsaicin treatment of both cervical vagi to block C-fibers' conduction, suggesting that the reflexes were mediated through the stimulation of CSLV afferents. Pretreatment with HC030031 [an antagonist of transient receptor potential ankyrin subtype 1 protein (TRPA1)] or AP18 (another TRPA1 antagonist), but not their vehicle, markedly attenuated the apneic response induced by MG25. Consistently, electrophysiological results showed that pretreatment with HC030031 largely attenuated the intense discharge in CSLV afferents induced by injection of MG25 in open-chest and artificially ventilated rats. In isolated CSLV neurons, the perfusion of MG evoked an abrupt and pronounced increase in calcium transients in a concentration-dependent manner. This stimulatory effect on CSLV neurons was also abolished by HC030031 treatment but not by its vehicle. In conclusion, these results suggest that MG exerts a stimulatory effect on CSLV afferents, inducing pulmonary chemoreflexes, and such stimulation is mediated through the TRPA1 activation.NEW & NOTEWORTHY Methylglyoxal (MG) is implicated in the development of painful diabetic neuropathy. A retrospective cohort study revealed an increased incidence of asthma exacerbations in patients with diabetes. This study demonstrated that elevated circulating MG levels stimulate capsaicin-sensitive lung vagal afferents via activation of TRPA1, which in turn triggers respiratory reflexes. These findings provide new information for understanding the pathogenic mechanism of diabetes-associated hyperreactive airway diseases and potential therapy.


Assuntos
Acetanilidas , Asma , Neuropatias Diabéticas , Purinas , Humanos , Ratos , Animais , Capsaicina/farmacologia , Ratos Sprague-Dawley , Aldeído Pirúvico/efeitos adversos , Aldeído Pirúvico/metabolismo , Neuropatias Diabéticas/metabolismo , Estudos Retrospectivos , Pulmão , Nervo Vago/fisiologia , Apneia , Asma/metabolismo , Canal de Cátion TRPA1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...